Graduate Student Seminar
November 10, 2023
12:00 p.m. ET
Scaife Hall 105
November 10, 2023
12:00 p.m. ET
Scaife Hall 105
The interplay between ions and electrons governs processes as common as the biochemistry essential for life and the performance of devices as ubiquitous as batteries. The energy that powers our smart phones and laptops is stored by ions. Yet when we peer past the battery and examine the device-scale electronics, mobile ions are nowhere to be found. This is a missed opportunity because the coupling between ions in electrolytes and electrons/holes in novel semiconductors is strong. For example, in two-dimensional (2D) materials this coupling has uncovered exciting phenomena such as spin polarization, photogalvanic current, current-induced circularly polarized electroluminescence, and superconductivity. Remarkably, these demonstrations have relied on electrolytes that were not designed for investigating semiconductor physics, but instead for energy storage. Our group is reimagining how ions can be used in electronics when the electrolyte is custom designed to provide a specific functionality or unlock a new mechanism to control transport. For example, we have developed a “monolayer electrolyte” that is a single molecule thick and is designed for bistability. We have custom-synthesized a single-ion conductor and used it to induce strain in 2D FETs, converting the material from semiconducting to metallic. We are developing a new type of “locking” electrolytes that can lock electric double layers (EDLs) under an applied field. Our development of these and other new ion-conductors is grounded in fundamental materials science and driven by applications in the electronics community including non-volatile memory, low-power logic, hardware security, and neuromorphic computing. In this talk I will review the basics of EDL gating and highlight our most recent developments on ion conductors with an eye towards application.
Fulleron is an Associate Professor, Bicentennial Board of Visitors Faculty Fellow, and Vice Chair for Graduate Education in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. She earned her Ph.D. in Chemical Engineering at Penn State in 2009, and joined the Department of Electrical Engineering at the University of Notre Dame as a Research Assistant Professor. In 2015 she established the Nanoionics and Electronics Lab at Pitt as an Assistant Professor, and was promoted to Associate Professor with tenure in 2020. Fullerton’s work has been recognized by an NSF CAREER award, an Alfred P. Sloan Fellowship, a Marion Milligan Mason award for women in the chemical sciences from AAAS, and a Ralph E. Powe Jr. Faculty Award from ORAU. For her teaching, Fullerton was awarded the 2018 James Pommersheim Award for Excellence in Teaching in Chemical Engineering at Pitt. For more information, visit http://fullertonlab.pitt.edu/
March 14 2025
10:00 AM ET
Materials Science and Engineering
A Journey from Atoms to Materials: Computationally-Guided Discovery and Design of Functional Materials, presented by Prashun Gorai, Rensselaer Polytechnic Institute
McConomy Auditorium, First Floor Cohon University Center
March 21 2025
10:00 AM ET
Materials Science and Engineering
Thermophysical and Thermochemical Properties of Transition Metal Diborides up to and above 3000 degrees, presented by Scott J. McCormack, University of California, Davis
McConomy Auditorium, First Floor Cohon University Center
March 28 2025
10:00 AM ET
Materials Science and Engineering
Deciphering microscopic mechanisms driving assembly and flow of soft materials, presented by Vikram Jadhao, Indiana University, Bloomington
McConomy Auditorium, First Floor Cohon University Center
April 11 2025
10:00 AM ET
Materials Science and Engineering
The Green Steel Revolution, presented by Sara Hornby-Anderson
McConomy Auditorium, First Floor Cohon University Center
April 18 2025
10:00 AM ET
Materials Science and Engineering
presented by Robert Macfarlane, Massachusetts Institute of Technology
McConomy Auditorium, First Floor Cohon University Center
April 25 2025
10:00 AM ET
Materials Science and Engineering
Oxide Dispersion Strengthening via Additive Processing: A Revolutionary New Approach for High Temperature Alloys, presented by Michael J. Mills, The Ohio State University
McConomy Auditorium, First Floor Cohon University Center