Graduate Student Seminar
September 29, 2023
12:00 p.m. ET
Scaife Hall 105
September 29, 2023
12:00 p.m. ET
Scaife Hall 105
Crystal interfaces exist in diverse materials systems in the form of grain/phase boundaries (GBs) in three-
dimensional polycrystals and as heterointerfaces in two-dimensional (2D) heterostructures. Interfaces signifi-
cantly influence the mechanical response of a material as observed in phenomena such as superplasticity and creep in polycrystals and the much sought-after electromechanical coupling in 2D materials that is responsible for correlated electron physics. Recognizing interface dislocations as the primary carriers of interface plasticity, our overarching goal is to build a statistical mechanics model for heterointerfaces that connects the discreteatomic structure to interface continuum properties, such as energy and mobility.
Enumerating all line defects in arbitrary heterointerfaces is the first step towards building a statistical model. To this end, we will present a unified mathematical framework to enumerate all interface dislocations in 2D heterostructures, and disconnections (dislocation with a step) in rational GBs. Our framework is driven by the Smith normal form (SNF) for integer matrices which enables us to systematically explore the bicrystallography of interfaces. Analogous to the definition of a bulk dislocation, which relies on the translational symmetry of a 3D lattice, the framework characterizes a heterointerface’s translation symmetry, which is integral to the definition of interface dislocation. Central to our framework are two lattices — the coincident site lattice (CSL) and the displacement shift complete lattice (DSCL) — derived from the two lattices that constitute an interface. The constructive nature of the framework lends itself to an algorithmic implementation based exclusively on integer matrix algebra.
Next, we will demonstrate the calculation of nucleation barriers of the enumerated line defects in GBs and a large-twist (> 10◦) bilayer graphene. We conclude by showing how the resulting energetics of individual
line defects can be aggregated in the form of ensemble averages to arrive at thermodynamic and kinematic
properties of heterointerfaces.
February 14 2025
10:00 AM ET
Materials Science and Engineering
"Epitaxial integration of dissimilar semiconductors for infrared optoelectronics," presented by Kunal Mukherjee, Stanford University
McConomy Auditorium, First Floor Cohon University Center
February 21 2025
10:00 AM ET
Materials Science and Engineering
presented by Andrew Goretsky, ADL Philadelphia
McConomy Auditorium, First Floor Cohon University Center
February 28 2025
10:00 AM ET
Materials Science and Engineering
Extreme mechanics and manufacturing of materials across scales, presented by Yu Zou, University of Toronto
McConomy Auditorium, First Floor Cohon University Center
March 14 2025
10:00 AM ET
Materials Science and Engineering
A Journey from Atoms to Materials: Computationally-Guided Discovery and Design of Functional Materials, presented by Prashun Gorai, Rensselaer Polytechnic Institute
McConomy Auditorium, First Floor Cohon University Center
March 21 2025
10:00 AM ET
Materials Science and Engineering
Thermophysical and Thermochemical Properties of Transition Metal Diborides up to and above 3000 degrees, presented by Scott J. McCormack, University of California, Davis
McConomy Auditorium, First Floor Cohon University Center
March 28 2025
10:00 AM ET
Materials Science and Engineering
Deciphering microscopic mechanisms driving assembly and flow of soft materials, presented by Vikram Jadhao, Indiana University, Bloomington
McConomy Auditorium, First Floor Cohon University Center